Matematik Öğretmenliği \ 1-2
Recep Aslaner Öğretmen olmak hayaliyle üniversitelerin matematik bölümüne gelen öğrenciler en az dört yıl bu bölümlerde okuyor. Meslek hayatlarında işlerine yarayacak yeterli geometri dersleri almadıkları için yetersiz bir geometri bilgisiyle göreve başlıyorlar. Bunun sonucu olarak sınıfta birçok sıkıntılar çekiyorlar. Öğrencilerine yeterince yararlı olamadığını düşünerek ümitsizliğe düşüyor ve ilk yıllarda mesleğinden soğuyorlar. Matematiğin görünen yüzü olarak tabir edilen geometri derslerinde diğer derslerden farklı olarak söylediklerimizi somutlaştırarak anlatma zorunluluğu vardır.
Bu kitap, öğretimin her basamağında yer alan ÖKLİD GEOMETRİSİ konularının kısaca DGY olarak isimlendirilen dinamik geometri yazılımları ile söylediklerimizi somutlaştırmak için çizilen şekilleri bilgisayar ortamında nasıl çizileceğini ele alan bir çalışmadır. Konfüçyüs'ün “Duyarsam bilirim, görürsem hatırlarım, yaparsam anlarım.” anlayışıyla öğretimde daha anlamlı ve kalıcı bir öğretim sağlanması adına yapılan bir çalışmadır.
Kitapta dinamik yazılımlarla en basit üçgen çiziminden ortik üçgen ve Napolyon üçgenlerine, çemberden özel çemberlere ve Soddy çemberlerine, koniklerden Cassini eğrileri ve inversiyon eğrilerine kadar her seviyede uygulamalara yer verilmiştir. Bu yönüyle kitap; ilköğretimden lisansüstüne kadar her düzeye ve mühendislik, matematik ve fen bilimleri gibi her alana hitap edecek şekilde hazırlanmıştır.
Kitabın kullanan herkese yararlı olması dileğiyle…
Arif Sabuncuoğlu Bu kitap, üniversitelerin matematik ve matematik öğretmenliği bölümlerinin birinci (veya ikinci) sınıflarında okutulan “Analitik Geometri” derslerinde ders kitabı olarak okutulabilecek niteliktedir.
Bu bölümlerde eğitim alan öğrencilerin ileri sınıflarda okuyacakları derslerde ihtiyaç duyacakları temel konuları kapsamasının yanı sıra öğretmen adaylarının liselerde öğretmenlik yaparken okutacakları konularda da onlara yardımcı olacaktır. Bu konular fazla ayrıntıya girilmeden oldukça öz olarak verilmiştir. Konular arasındaki bağlantılar tam olarak kurulmuş, açık soru kalmamasına özen gösterilmiştir.
Her kavramın arkasından bu kavramı açıklayıcı yeterince örnek verilmiştir. Her kesimin sonuna konuyu kavratmaya yönelik yeterli sayıda alıştırma konulmuştur. Bu alıştırmaların tümünün çözümleri ayrı bir kitap olarak yayımlanmıştır.
Problemler kolaydan zora doğru sıralanmış, soyut problemler sonlara konulmuştur. Kitaba alınan problemler bu alandaki çok özel problemlerden çok, öğrencilerin kolayca anlayabilecekleri, öğrencilere Analitik Geometri dersini sevdirecek ve ileri sınıflarda okuyacakları derslere temel oluşturacak analitik geometri bilgilerini daha iyi kavratacak ve pekiştirecek türde sorulardır. Problemlerin sonuçları ve bu sonuçları elde ederken yapılması gereken işlemler okuyucuyu yormayacak biçimde seçilmiştir.
Ahmet Dernek Dördüncü basımına ulaşan Analiz I isimli bu kitap; Fen ve Mühendislik Fakültelerinin birinci sınıfında verilmekte olan Analiz I-II (Matematik I-II) derslerinin programına uygun olarak hazırlanmıştır ve çok miktarda çözümlü problem içermektedir. Birinci bölümde; reel sayıların tanıtımı, sıralama, sınırlı kümeler, komşuluk kavramı gibi temel konular incelenmektedir. Sonraki bölümlerde; fonksiyonlar, reel sayı dizileri, elemantar fonksiyonlar, seriler, fonksiyonlarda limit, süreklilik, türev ve integral kapsamlı olarak ele alınmaktadır.
Serap Öztop Kaptanoğlu Analiz I ve Analiz II olarak tasarlanan serinin bu ilk cildi, analizin temel kavramları olan reel sayı, dizi, limit ve süreklilik üzerine yoğunlaşarak konulara kapsamlı yaklaşmayı hedeflemiştir. Kitap iki kesimden ve her bir kesim de dört bölümden oluşmaktadır. Birinci kesimde kitap için temel oluşturacak nitelikte matematiksel mantık, kümeler ve fonksiyonlara ilişkin konular ele alınmıştır. Özellikle reel sayılar ve topolojisi bu kesimin önemli odak noktasıdır.
İkinci kesimde ise önce kitabın ağırlıklı kısmı olan reel sayı dizileri ayrıntılı olarak incelenmiştir. Burada dizilerin yakınsaklığı, alt dizi, monoton dizi, Cauchy dizisi, alt limit ve üst limit kavramları ve birbirleriyle ilişkileri öne çıkan kavramlardır. Fonksiyonların limitleri, monoton fonksiyonlar, süreklilik, düzgün süreklilik kavramları ve birbirleriyle ilişkileri de ele alınmıştır. Kitabın son bölümü ise önceki bölümlerin uygulaması niteliğinde olup üstel, logaritmik, hiperbolik ve trigonometrik fonksiyonlara ayrılmıştır.
Kitapta analizin temel konuları birbirleriyle ilişkileri derinlemesine incelenmiş, örnekler ve karşıt örneklerle zenginleştirilmiştir. Her bölüm sonunda konuları pekiştirecek alıştırmalar verilmiştir.
Üniversitelerin matematik bölümlerinde okutulan tüm analiz derslerine temel olmasının yanı sıra matematikte ileri düzeyde çalışma yapmayı amaçlayan matematikçilere de yardımcı olacak nitelikte bir kitaptır.
Salih Zeki - Remzi Demir - Yavuz Unat Türk bilim tarihi ve bilim felsefesi araştırmalarının kurucusu olan Salih Zeki, 1913 yılımda yayımlamaya başladığı Asar-ı Bakiye adlı bu yapıtında Ortaçağ İslam Dünyası’nda yapılan matematik ve astronomi çalışmalarını bütün boyutlarıyla sergilemiş ve batılı oryantalistlerin bilerek veya bilmeyerek tarihi hakikatleri çarpıtmalarını engellemeye çalışmıştır. Salih Zeki Bey Asar-ı Bakiye adlı mükemmel yapıtını dört cilt olarak tasarlamış ve Birinci cildinde Trigonometri tarihini, İkinci cildinde hesap ve cebir tarihini, Üçüncü cildinde Astronomi Tarihini ve Dördüncü cildinde de geometri tarihini konu edinmiştir. Aradan geçen doksan yıldan sonra Asar-ı Bakiye’nin günümüz Türkçesine dönüştürülerek yeniden basılmıştır.
Salih Zeki - Remzi Demir - Yavuz Unat

Türk bilim tarihi ve bilim felsefesi araştırmalarının kurucusu olan Salih Zeki, 1913 yılımda yayımlamaya başladığı Asar-ı Bakiye adlı bu yapıtında Ortaçağ İslam Dünyası’nda yapılan matematik ve astronomi çalışmalarını bütün boyutlarıyla sergilemiş ve batılı oryantalistlerin bilerek veya bilmeyerek tarihi hakikatleri çarpıtmalarını engellemeye çalışmıştır. Salih Zeki Bey Asar-ı Bakiye adlı mükemmel yapıtını dört cilt olarak tasarlamış ve Birinci cildinde Trigonometri tarihini, İkinci cildinde hesap ve cebir tarihini, Üçüncü cildinde Astronomi Tarihini ve Dördüncü cildinde de geometri tarihini konu edinmiştir. Aradan geçen doksan yıldan sonra Asar-ı Bakiye’nin günümüz Türkçe’sine dönüştürülerek yeniden basılmıştır.

Remzi Demir, Safiye Yılmaz Erten Büyük bilim tarihçimiz ve felsefecimiz Salih Zeki, Resimli Gazete'de yayımladığı Âsâr-ı Eslâf (Seleflerin Eserleri) adlı dizi-makalesinde matematik tarihimiz açısından çok kıymetli matematik eserlerini tanıtmış ve bilim tarihi yazıcılığımızın temellerini atmıştı.
Bu çalışma ile ilk defa günümüz Türkçesine aktarılan bu makaleler, alanda yeni araştırmalara ve yorumlara yol açacak ve Salih Zeki'nin klasik metinlere dayalı çalışma yönteminin genç bilginler arasında tanınmasına katkıda bulunacaktır.
Aysun Tezel Özturan Nümerik analiz (sayısal analiz), analitik olarak çözülemeyen veya çözümü çok zor olan problemlerde yaklaşık çözüm bulmak için kullanılan yöntemlerden oluşmaktadır. Son yıllarda bilgisayar alanındaki gelişmelere paralel olarak nümerik analiz yöntemlerinin kullanımı artmıştır. Nümerik analiz yöntemleri, pek çok mühendislik alanında ve uygulamalı bilimlerde sıklıkla kullanılmaktadır.
Bu kitapta, nümerik analiz yöntemleri ve yöntemlerin MATLAB uygulamaları anlatılmıştır.
Kitap, on ana bölümden oluşmaktadır:
İlk bölümde, nümerik analizin tarihçesine, kullanılan temel teoremlere, makine sayıları ve hatalar konusuna yer verilmiştir. İkinci bölümde, lineer denklem sistemleri için direk ve iteratif olan çözüm yöntemlerinden bahsedilmiştir. Üçüncü bölümde, lineer olmayan denklemler ve lineer olmayan denklem sistemleri için çözüm yöntemleri işlenmiştir. Dördüncü bölümde, interpolasyon ve polinom yaklaşımları teorisine ve uygulamalarına yer verilmiştir. Beşinci bölümde, eğri uydurma, en küçük kareler yöntemi, dik polinomlarla eğri uydurma, trigonometrik fonksiyonlarla yaklaşım konularına yer verilmiştir. Altıncı bölümde, yaklaşık türev değeri bulmak için kullanılan sayısal türev formülleri ele alınmıştır. Yedinci bölümde, yaklaşık integral değeri bulmak için sayısal integral yöntemleri işlenmiştir. Ayrıca improper integrallere ve çok katlı integrallere de yer verilmiştir. Sekizinci bölümde, adi diferansiyel denklemler ve adi diferansiyel denklem sistemleri için tek adımlı ve çok adımlı çözüm yöntemleri yer almaktadır. Ayrıca sınır değer problemleri de ele alınmıştır. Dokuzuncu bölümde, kısmi diferansiyel denklemlerin sayısal çözümleri için kullanılan sonlu farklar yöntemi işlenmiştir. Laplace denklemi, ısı denklemi ve dalga denklemi için sonlu farklar yöntemi anlatılmaktadır. Son bölümde, kitapta anlatılan tüm sayısal yöntemlerin MATLAB uygulamaları ele alınmıştır. Bu bölümde, kullanılan bütün MATLAB fonksiyonları ve MATLAB kodları yer almaktadır. Her bölümün sonunda konu ile ilgili alıştırmalar ve cevapları bulunmaktadır.
Bu kitap, lisans ve lisansüstü seviyedeki matematik, uygulamalı matematik, nümerik analiz kullanan tüm mühendislik öğrencileri için yararlı bir kaynak niteliğindedir.
Erdem Çekmez Matematiğe yönelik anlamlı öğrenmenin gerçekleşebilmesi için öğretim sürecinde matematiksel kavramlar farklı temsillerine vurgu yapılarak ele alınmalı ve öğrenciler matematiksel araştırma-sorgulama sürecini deneyimlemelidir. Matematik öğretimi için geliştirilmiş bir bilgisayar yazılımı olan GeoGebra, bu hususlarda matematik öğretimine katkı sağlama potansiyeline sahiptir. Bu kitap, GeoGebra yazılımının matematiğin farklı alanlarında kullanılabilmesi için gerekli teknik bilginin yanı sıra öğrencilerin deneysel sorgulama ve doğrulama süreçlerini yaşayabilecekleri ortamları örneklendiren etkinlikler sunmaktadır.
Ayşe Kökcü Bir Zamanlar Geometri, geometrinin 2500 yıllık tarihini kırılma noktaları üzerinden anlatan bir kitaptır. Matematik öğrencilerinin salt matematik öğrenirken çektiği zorluğun en önemli sebebi, öğrendikleri matematik formülleriyle yaşadıkları dünya arasında gerekli ilişkiyi kuramamalarıdır. Aynı şekilde felsefe öğrencileri de matematik ve matematik tarihi için yakın düşüncelere sahiptir. Öncelikle bu kitapla yapılmak istenen geometri üzerinden felsefe ve matematik tarihi arsındaki ilişkinin olabildiğince anlaşılır bir biçimde kurulmasıdır. İkinci olarak matematiğin ve matematik felsefesinin içerisinde geometrinin konumu hakkında bir fikir vermektir.
Euclid'in "Elementler"inden bu yana geometri, yer ölçümünden çok daha fazlasını vaat eden bir konumdadır. İnsanın kendine ve yaşadığı evrene dair anlayışının merkezinde yer alan nesnelerle ilgilidir.
Bunun ana nedeni geometrinin insan zihninin ürettiği bir bilgi türü olmasının yanında, evreni anlamada bir anahtar vazifesi görmesidir.
Fügen Torunbalcı Aydın Bu kitap, üniversitelerin Matematik, Matematik Mühendisliği ve Matematik-Bilgisayar bölümlerinde Soyut Cebir ya da Cebir adı altında okutulan dersler için bir ders kitabı olarak hazırlanmıştır. Kitabın amacı, lisans ve lisansüstü öğrencilerine soyut düşünmeyi gerektiren cebir konularında temel tanım, teorem ve sonuçlarının nasıl kullanıldığını göstermek için bir yaklaşım kazandırmaktır. Bu amaç doğrultusunda kitabın her bir konusu örnekler ile zenginleştirilmiştir. Kitap, üç temel cebirsel yapı olan Grup, Halka ve Cisim bölümlerini kapsamaktadır. Cebirsel Yapılar adını taşıyan bu kitap, soyut düşünmeyi gerektiren Cebir derslerinde öğrencilerimize yardımcı olacak ve problem çözümlerinde katkıda bulunacaktır.
Hilmi Demiray Bu kitap, mühendislik ve matematik öğrencilerine uzun yıllar "Matematik III" adı altında okuttuğum ders için hazırlanan notların belirli bir formata göre genişletilmesinden oluşmuştur. Okuyucunun konuları daha rahat kavrayabilmesi için özelden genele doğru ilerleme yöntemi seçilmiş, önce işlenenen konuyla ilgili çok sayıda örnek verildikten sonra konunun genel tanıtımı yoluna gidilmiştir. Böylece okuyucunun soyut kavramlar altında bunalmasının önüne geçilmeye çalışılmıştır.
Kitap, dört ana bölümden oluşmaktadır. Vektör ve vektör değerli fonksiyonların işlendiği birinci bölüm, daha sonraki bölümleri incelerken gereksinim duyulacak temel vektör bilgilerini içermektedir. İkinci bölümde çok değişkenli fonksiyonların tanımı, limiti ve türev kavramları; üçüncü bölümde çok katlı integraller ve nihayet dördüncü bölümde eğrisel ve yüzey integralleri incelenmiş ve çeşitli teoremlere yer verilmiştir.
Kitabın bütününde çok sayıda çözümlü örnekler verilerek konuların daha rahat anlaşılmasına çalışılmıştır. Her bölümün sonunda çok sayıda problem eklenerek okuyucunun kendini test etme imkânı sağlanmıştır.
Arif Sabuncuoğlu Bu kitap, yazarın “Analitik Geometri” adlı kitabındaki alıştırmaların çözümlerini içermektedir. Üniversitelerin birinci (veya ikinci) sınıflarında okutulmakta olan Analitik Geometri derslerinde öğrencilerimizin yararlanması için hazırlanmıştır.
Bu kitaptaki problemler, öğrencilerimizin ileri sınıflarda okuyacakları derslerde ihtiyaç duyacağı konuları kapsamasının yanı sıra, öğretmen adaylarının liselerde öğretmenlik yaparken okutacakları konularda da onlara yardımcı olacaktır. “Analitik Geometri” kitabına alıştırmaların çözümleri konulması hâlinde kitabın hacmi çok artacağından ayrı bir kitapta toplamanın daha uygun olacağı düşünülmüştür.
Problemler kolaydan zora doğru sıralanmış, soyut problemler sonlara konulmuştur. Kitaba alınan problemler, bu alandaki çok özel problemlerden çok, öğrencilerin kolayca anlayabilecekleri, onlara Analitik Geometri dersini sevdirecek ve ileri sınıflarda okuyacakları derslere temel oluşturacak Analitik Geometri bilgilerini daha iyi kavratacak ve pekiştirecek türde sorulardır. Problemleri, sonuçları ve bu sonuçlar elde edilirken yapılması gereken işlemler okuyucuyu yormayacak biçimde seçilmiştir.
Ahmet Sinan Çevik Bu kitap aynı yazarın "Cebire Giriş" ve "Soyut Cebir - Özel Konular" isimli kitaplarının içinde bulunan problemlerin bir çoğunun çözümüyle beraber bazı ek problem ve çözümlerini içermektedir.
Problem seçimlerinde, çoğunlukla temel seviyede cebir ders konularıyla birlikte azımsanmayacak sayıda lisansüstü seviyede problemler de verilmeye çalışılmıştır. Seçilen problemler temsilci niteliğinde olup aynı veya benzer kavramlar hakkında sadece bir veya iki problem ifade edilmiştir. Mevcut Türkçe birçok kaynakta, temel seviyedeki konular olan kümeler, fonksiyonlar ve tamsayıların uygulamaları gibi kavramlara ait oldukça fazla sayıda problem ve çözümü bulunduğundan, bu kitapta değinilen konulara yer verilmemiştir. Bunun yerine denklik bağıntıları ve denklik sınıfları kavramlarıyla başlanılması tercih edilmiştir. Diğer bölümler Yarıgruplar, Gruplar, Halkalar, Cisimler ve Cisim Genişlemeleri ve Modüller başlıkları altında incelenmiştir.
Arif Sabuncuoğlu Bu kitap, yazarın Diferensiyel Geometri adlı kitabındaki alıştırmaların çözümlerini kapsamaktadır. Üniversitelerin matematik bölümlerinde okuyan üçüncü (veya dördüncü) sınıf öğrencilerine, Diferensiyel Geometri derslerinde yardımcı olmak amacıyla hazırlanmıştır. Matematikte bir konunun yeterince algılanabilmesi için o konunun okunup geçilmesi yeterli olmamaktadır. O konuyla ilgili olarak çok sayıda problem çözülmesi gerekmektedir.

Diferensiyel Geometri, matematiğin en soyut dallarından biridir. Bu nedenle bir öğrencinin bir konuyu okuduktan (veya dinledikten) sonra bu konuyla ilgili problemleri çözebilmesi zor olmaktadır. Zaman zaman da çözümlü problemleri okudukça konu daha iyi anlaşılabilmektedir. Bu yüzden ders kitabındaki problemlerin tümünün çözümü bu kitaba konulmuştur. Problemler kolaydan zora doğru sıralanmış, soyut problemler sonlara konulmuştur. Matematiğin her dalı gibi, Diferensiyel Geometri dalı da çok geniştir. Kitaba alınan problemler bu alandaki çok özel problemlerden ziyade öğrencilerin kolayca anlayabilecekleri, öğrencilere Diferensiyel Geometri dersini sevdirecek ve matematiğin bu dalı hakkında genel bir fikir verecek türde sorulardır. Problemlerin çözümünde gereken her türlü açıklama yapılmış, ders kitabındaki teorem ve tanımlarla bağlantısı hatırlatılmıştır.
Cemal Yazıcı Çözümlü Problemlerle Analiz I-II-III kitabı, eğitim fakültelerinin matematik lisans programlarında okutulan Analiz l, Analiz ll ve Analiz lll derslerinin içeriklerine uygun olarak hazırlanan bir kaynak kitap niteliğindedir.
İlk beş bölüm Analiz I, ikinci dört bölüm Analiz II, son beş bölüm de Analiz III konularını içermektedir. Her bir bölüm geniş bir şekilde örneklerle anlatılmış ve bölüm sonlarında çok sayıda örnek çözümler yapılmıştır.
Eğitim fakültelerinde 40 yılı aşkın yaşanan deneyimlerin bir ürünü olarak ortaya çıkan bu kitap; üniversitelerin lisans programlarında Analiz ve Genel Matematik derslerini okutan öğretim elemanları için bir yardımcı kaynak, ayrıca liselerde çalışan matematik öğretmenleri için de bir kılavuz kaynak olacaktır.
Altun Altun 14 Mayıs 1950 seçimlerinde Adnan Menderes liderliğindeki Demokrat Parti (DP) büyük bir başarı elde etmiş ve Cumhuriyet Halk Partisi'nin (CHP) 27 yıllık iktidarına son vererek iktidara gelmiştir. Demokrat Parti'nin iktidarda kaldığı 1950-1960 dönemi, Türkiye'nin hem ekonomik anlamda dünya kapitalist sistemiyle bütünleşme hem de dış politika ve savunma alanlarında Batı ile bütünleşme çabalarının yoğunlaştığı bir dönemdir. Türkiye bu yıllarda, Amerika Birleşik Devletleri (ABD) ve Batılı müttefiklerinin oluşturduğu siyasi ve askeri yapıların güvenilir bir parçası olmuştur. Bu dönemde Türkiye-ABD ilişkileri güvenlik temelindeve askeri temelde şekillenmiş, Türk dış politikasının şekillenmesini derinden etkilemiştir. Ancak 1957 yılından itibaren Bloklar arası yumuşama, Menderes'in ABD'den yeterli ekonomik destek görmemesi, Orta Doğu buhranları ve Kıbrıs sorununda ABD'nin kendi lehine izlediği politikalara bağlı olarak DP'nin dış politikasında değişiklikler görülmüştür.
DP'nin son dönem dış politikasına göre, Türkiye'nin ABD dışında başka ittifak alternatifleri de mevcuttu. Zira ABD'den yeterli desteği göremeyen Menderes, SSCB'ye yakınlaşmaya başlamış, Uzak Doğu ziyaretleri gerçekleştirerek NATO benzeri bir güvenlik yapılanması olan “Asya İttifakı”nı oluşturmaya çalışmıştır. Güvenliği sağlamak ve ekonomik kalkınmayı artırmak için Türk dış politikasının etki sahasını genişleten DP, ABD'ye rağmen SSCB, Uzak Doğu ve Avrupa ülkeleri ile ilişkileri çeşitlendirerek, başı dik, çok boyutlu ve daha bağımsız bir dış politika izlemeye başlamıştır. Türkiye'nin ABD ile kurduğu sıkı güvenlik ittifakında ikili ilişkilerin altın çağı DP'nin son döneminde tahribata uğramaya başlamıştır.
Bu çalışma, Demokrat Parti'nin ABD politikasını özellikle 1957-1960 yılları arasında incelerken, arşiv belgeleri ışığında tüm yönleriyle ele alıyor.
Bülent Ayanlar Diferansiyel Denklemler, modern matematiğin temel taşlarından biridir ve Lineer Cebir ile birlikte, mühendislik, doğal bilimler, ekonomi, fiziksel ve sosyal bilimlerdeki pek çok problemin çözümü için gerekli bir disiplindir. Bilgisayar teknolojileri ile ilgili olarak yapılan ar-ge çalışmaları, diferansiyel denklemlerin çözümü için yeni teknikler ortaya çıkarmıştır. Bu sayede Diferansiyel Denklem Sistemleri ile modellenen problemlerin çözümleri mümkün olmuştur.
Bu kitap, Üniversitelerin Akademik Programında yer alan Diferansiyel Denklemler dersinde okutulmak üzere hazırlanmıştır. Kitap; Diferansiyel Denklemlerin temelini oluşturan bilgilerin yanı sıra, ilgili Mühendisliklerin Akademik Programında okutulan alan derslerindeki uygulamalara yönelik konuları da içermektedir.
Kitap; Birinci Basamaktan Diferansiyel Denklemler, Birinci Basamaktan Diferansiyel Denklemlerin Uygulamaları, Yüksek Basamaktan Lineer Diferansiyel Denklemler, Laplace Dönüşümü, İkinci Basamaktan Diferansiyel Denklem Uygulamaları ve Değişken Katsayılı Lineer Diferansiyel Denklemler başlıklarından oluşmaktadır.
Hilmi Demiray Diferansiyel denklemler, fen ve sosyal bilimlerdeki birçok olayın matematik modellemesi sonucu ortaya çıkan denklemler olup bu denklemlerin belirli koşullar altında çözümü ve sonuçlarının yorumu, birçok olayın aydınlatılmasında ve hatta bazen yeni olayların keşfinde önemli rol oynar. Bu nedenle diferansiyel denklemler, uygulamalı matematiğin önemli bir kolunu oluşturur.
Bu kitap, yazarın yıllar çeşitli üniversitelerde mühendislik ve matematik öğrencilerine verdiği Adi Türevli Diferansiyel Denklemler dersi için hazırladığı notların genişletilmesi ve geliştirilmesi sonucunda ortaya çıkmıştır. Kitap esas itibarıyla yedi bölümden oluşmaktadır. Birinci bölümde, diferansiyel denklem kavramı ve çeşitli çözüm yöntemlerinden söz edilmiştir. İkinci bölümde, birinci mertebeden denklemler, üçüncü bölümde yüksek mertebeden sabit katsayılı denklemler; dördüncü bölümde, değişken katsayılı ikinci mertebeden denklemler; için kuvvet serisi çözümü yöntemi; beşinci bölümde, başlangıç değer problemleri için Laplace dönüşümü yöntemi; altıncı bölümde, diferansiyel denklem takımları çözümü ve nihayet yedinci bölümde; sınır değer problemleri, öz değerler ve öz fonksiyonlar incelenmiştir.
Kitapta, okuyucunun konuları daha rahat kavramasına yardımcı olmak amacıyla işlenen her konunun ardından çok sayıda çözümlü örnekler verilmiştir. Keza, okuyucuyu soyut kavramlarla boğmamak adına birçok teorem, incelenen problemin sonucu şeklinde ifade edilmeye çalışılmıştır. Okuyucunun konuları anlama seviyesini test etmek için her bölümün sonuna çok sayıda problem eklenmiştir.
Muhamet Emin Özdemir “Diferansiyel Denklemler” özellikle Fen Bilimlerinde olayların açıklığa kavuşmasında aracı olarak türev ve integralin tamamlayıcısı olan bir derstir. Haftalık ders saatleri göz önünde bulundurularak kitabın hacmi, seçilmiş konulardan oluşturuldu. Kitapta örneklere ilaveten her başlığa ilişkin alıştırmalar ve onların bazılarının çözümleri açıklamalı olarak sunuldu. Konuların pekiştirilebilmesi için kitabın sonunda tüm başlıklara ilişkin genel alıştırmalar ve onların tek sayıya tekabül edenlerinin çözümleri cevap anahtarı şeklinde yazıldı.
Bu kitap, Eğitim Fakültelerinin Ortaöğretim Matematik Eğitimi Anabilim dallarında ve özellikle de İlköğretim Matematik Eğitimi Anabilim dallarında öğrenim gören öğrencilerin gireceği genel sınavlara yönelik yardımcı kaynak olacak niteliktedir.

Rauf Amirov, Nilüfer Topsakal, Mehmet Ünlü Bu kitap, Sivas Cumhuriyet Üniversitesi Fen Fakültesi Matematik bölümünde uzun yıllar okutulan diferansiyel denklemler dersinde kullanılan ders notlarının güncel literatürle buluşturulmasıyla özgün bir şekilde düzenlenmiştir. On bir bölümden oluşan bu kitabın, matematik bölümleri lisans programlarında iki dönem boyunca okutulması öngörülmektedir.
Bu kitapta öncelikle diferansiyel denklemler teorisinin temel kavramları ve tanımları, bu kavramlarla ilgili örnekler ve onlarla ilgili alıştırmalar verilmiştir. Kitabın ilk beş bölümü birinci mertebeden diferansiyel denklemler ile ilgili hem teorik hem de pratik bilgileri içermektedir. İlk bölümün sonunda ise birinci mertebeden diferansiyel denklemlerin uygulamaları ile ilgili elektrik devreleri, fizik, kimya, biyoloji, nüfus planlaması ve finansal problemlere ait örnekler verilmiştir. Bu kitabın ikinci kısmı, yüksek mertebeden diferansiyel denklemler ile ilgili ayrıntılı bilgileri içermektedir. Öncelikle yüksek mertebeden diferansiyel denklemler ile ilgili temel tanım ve kavramlar, daha sonra ise sınıflandırılma ile ilgili önemli bilgiler verilmiştir. Takip eden bölümlerde birinci mertebeden diferansiyel denklem sistemi ile ilgili temel kavramlar ve çözüm yöntemleri verilmiştir. Son olarak Laplace dönüşümü ile ilgili temel kavramlar ve bu dönüşümün lineer diferansiyel denklemin çözümüne dair uygulamalar verilmiştir.
Özetle bu kitap; temel bilimler, mühendislik, sağlık, iktisat alanlarında lisans veya lisansüstü düzeyde öğrenim gören öğrencilerin ve ayrıca öğretim üyelerinin özellikle çok sayıda çözümlü örneklerle konuyu daha iyi kavrayarak öğrenmelerini sağlayacaktır.
Hüseyin Bereketoğlu Bu kitap, Ankara Üniversitesi Fen Fakültesi Matematik Bölümünde okutulan Diferensiyel Denklemler dersi için yıllarca kullanılan ders notlarının güncel literatürle harmanlanıp yeniden gereken genişlikte ve derinlikte özgün bir şekilde düzenlenmesiyle meydana gelmiştir. On beş bölüm ve 554 sayfadan oluşan bu kitabın matematik lisans programlarında iki dönem boyunca okutulması tasarlanmıştır.
Bu kitapta, diferensiyel denklemlerin olmazsa olmazları olan tem el kavramlar, teoremler ve çözüm metotları üzerinde durulmuş ve diferensiyel denklemlerin gerçek hayata dair uygulama alanlarına dikkat çekilmiştir. İşlenen kavram, teorem ve çözüm metotlarının kolaylıkla anlaşılmaları için grafikler çizilmiş, tablolar kurulmuş, yeterli sayıda örnek çözülmüş ve çok sayıda alıştırma verilmiştir. Ayrıca, diferensiyel denklemlerin farklı uygulama alanlarına yönelik örnek problemler incelenmiş ve bu bağlamda bir dizi alıştırma hazırlanmıştır. Son olarak, okuyucuya bırakılan alıştırmaların önemli bir kısmının cevapları, öz kontrol sağlansın diye kitabın sonunda paylaşılmıştır. Bu bakımdan, bu kitap sadece matematik bölümlerinde değil aynı zamanda fizik, astronomi ve uzay bilimleri ile mühendislik bölümlerinde de bir ders kitabı olarak izlenebilecek ve okutulabilecek genel normlara sahiptir. Özetle, temel bilimler, mühendislik, iktisat ve sağlık alanlarında lisans veya lisansüstü düzeyde öğrenim gören ve diferensiyel denklemlere ihtiyaç duyan herkes bu kitaptan istediği ölçüde kolaylıkla yararlanabilir.
Richard BRONSON, Gabriel B. COSTA Sınav Soruları mı Zor? Dersleri mi Kaçırdın?
Yeterli Zamanın mı Yok?
Neyse ki sizin için Schaum Serisi var.
40 milyondan fazla öğrenci derslerde ve sınavlarda başarılı olmak için yardımcı olarak Schaum’a güvendi. Schaum, her konuda yüksek başarının ve daha hızlı öğrenmenin anahtarıdır. Her kitapta bütün konu bilgileri konuya göre kolay takip edilir bir şekilde verilir.
Ayrıca yüzlerce örnek, çözümlü problem ve uygulamalı alıştırma da edinirsiniz.
Bu Schaum kitabı size;
• 563 adet tamamı çözümlü problem,
• Tüm temel konuların tamamını gözden geçirme fırsatı,
• Birinci basamaktan, ikinci basamaktan ve n’inci basamaktan
diferensiyel denklem konularıyla ilgili kapsamlı bilgi verir.
R. Kent NAGLE, Edward B. SAFF, Arthur David SNIDER, Pearson Bu kitap, diferensiyel denklemlerin temel teorisi ve bu teorinin ihtiyaç duyduğu birçok alandaki boşluğun bir kısmını dolduracağını ümit ettiğimiz ve diğer bilim dallarında da yer alan, konularla diferensiyel denklemlerin ara kesitinde bulunan oldukça kapsamlı ve güncel bir içeriğe sahip olan, alanlarında uzmanlaşmış bilim insanlarının yorum ve çabalarıyla açık ve sade bir dille Türkçeye çevrilmiştir. Ayrıca bu kitap, içeriği bakımından sadece fen ve eğitim fakültelerinin Matematik bölümlerinde değil, Fizik, Kimya, Biyoloji, İstatistik ve Astronomi gibi diğer bölümlerdeki bilhassa da mühendislik ve mimarlık fakültelerinin ilgili bölümlerindeki öğretim üyeleri ve öğrencilerimiz için detaylı bir kaynak niteliğindedir.
Soley Ersoy, Mahmut Akyiğit, Önder Gökmen Yıldız Eğrileri genel ve yerel özellikleri itibarı ile ayrıntılı olarak açıklamayı hedefleyen bu kitap, Matematik bölümlerinde okuyan lisans ve lisansüstü öğrenciler ile birçok teknik çalışma alanının farklı problemlerini modellerken veya analiz ederken eğrilere ve ilgili kavramlara dayalı yaklaşımlar kullanma ihtiyacı duyan okuyucular için kaynak olacak şekilde hazırlanmıştır. İlk bölüm, eğriler teorisinin tarihsel gelişim sürecine hızlı bir bakış atmamızı sağlarken ikinci bölüm, kitap boyunca kullanılacak temel tanımlarla bizi tanıştırmaktadır. Üçüncü bölümde, eğriler yüksek boyutlu uzaylarda diferansiyel geometrik açıdan derinlemesine incelenmektir. Dört ve beşinci bölümlerde de özel olarak sırasıyla düzlemde ve 3-boyutlu uzayda çalışıyor olmanın sağladığı avantajlar veya farklılar ile eğriler ve ilgili kavramlar açıklanmaktadır. Özellikle mekanizmaların çalışma prensiplerinde kendine uygulama alanı bulan, bilinen eğri çiftleri altıncı bölümde tanıtılmaktadır. Öklid geometrisinin temel kavramlarının Kartezyen koordinatlarda sayısal formülasyonlara sahip olması gerçeği ile aritmetik ve cebirsel yaklaşımı birleştiren analitik geometrinin, geometrik problemlerle başa çıkmak için güçlü yöntemler sağlamasından dolayı gerçek hayat problemlerinde en çok karşılaştığımız eğriler arasında yer alan konikler yedinci bölümde analitik olarak açıklanmaktadır.
Ali Ekber Sever, Amuri Binaman, Barış Bülent Kırlar, Beyza Çiçek, Birsen Eygi Erdoğan,, Caner Kara, Duygu Aruğaslan Çinçin, Elifnur Şakalak, Fatma Tokmak Fen, Medine Demir, Mehmet Kocabıyık, Mehmet Onur Fen, Mehmet Onur Olgun, Melda Alkan Çakıroğlu, Mevlüde Yakıt Ongun, Pınar Karadayı Ataş, Pınar Usta Evci, Serap Ergün, Serap Ergün, Sırma Zeynep Alparslan Gök, Süreyya Özöğür Akyüz, Zekeriya Özkan Explore the frontier of mathematics in action!
This book brings together a rich collection of innovative mathematical ideas that have been developed to address today's complex challenges in science, technology, and industry. Covering a broad range of topics—from cryptography, machine learning, and neural networks to civil engineering applications, chaos theory, disease modeling, and financial stability—each chapter explores new approaches to solving real-world problems that impact our daily lives. With practical examples, such as enhancing emergency evacuation strategies, modeling crowd behavior, and evaluating the financial health of banks, this book demonstrates how mathematics plays a crucial role in developing efficient, impactful solutions.
Ideal for researchers, professionals, and anyone with an interest in the power of mathematics, this book serves as both a reference and an inspiration for applying math to tackle current interdisciplinary issues. It provides fresh perspectives on longstanding problems and offers creative approaches that showcase the potential of modern mathematical tools. A valuable resource for both new and experienced practitioners, this book highlights how math continues to evolve, driving innovation and understanding in our ever-changing world. Readers will discover practical insights and advanced methods that are both timely and essential for study or inspiration.
Osman Altıntaş Bulutsuz bir gecede, dolunayı gördüğümüzde onun bize olan uzaklığını, şeklini, yarıçapını ve kitlesini merak ederiz. Astronomi bilimini doğuran itici sebeplerden biri de meraktır.
İnsanlar; Güneş'i ve Ay'ı hayranlıkla izlemişler, daha sonra yaptıkları küçük teleskoplarla gezegenleri ve yakın yıldızları gözlemlemişlerdir. Teknolojinin gelişmesi ile daha büyük teleskoplar yaparak onlarla yıldızları ve bizim galaksimiz olan Samanyolu’nu tanımışlardır. 20. yüzyılın ortalarından itibaren icat ettikleri güçlü radyo teleskoplarla diğer galaksileri ve karadelikleri keşfetmişlerdir.
Evren, Büyük Patlama (Big Bang)’dan 15 milyar yıl sonra bugünkü hâlini almış ve bundan 4,5 milyar yıl önce Dünyamız meydana gelmiştir.
Sonsuz büyük şekiller ve sayılar ile sonsuz küçük şekiller ve sayılar, matematiğin konusudur. Evrenin oluşumunda ve gelişiminde inanılmaz derecede hassas bir ölçü vardır. Ünlü filozof Galileo; “Tanrı kâinatın kitabını matematik diliyle yazmıştır.” sözü ile Evreni, Tanrı'nın yazdığı bir kitap olarak kabul etmiştir. Gerçekten, evrende her şeye bir ölçü tayin edilmiş ve bunu sayılarla ifade etme, insana bir görev olarak verilmiştir.
Evrenin oluşumunda, çok hassas ölçülerin hâkim olduğu bir matematiksel kesinliğin mevcut olması nedeniyle bu kitabın adının “Evrende Matematik” olması uygun görülmüştür.
Bu kitabın hazırlanmasındaki amaç; astronomi eğitimi almış biri olarak insanların evren ile ilgili merak ettikleri bazı bilgileri fazla bilimsel derinliğe inmeden, daha çok ölçüleri esas alarak sunmaktır.
Sıddık Arslan Bu kitap lisans ve ön lisans öğrencilerine finans matematiğini kavramsal boyutta öğretmek amacıyla hazırlanmıştır. Konuların anlatımında yalın matematiksel yaklaşım benimsenmiştir. Finans alanının detaylı yorumlarına girilmeden öğrencilere kavramsal bilgiler ve bu bilgilerin matematiksel ifadeleri anlatılmıştır. Böylece hem temel kavramların ve matematiksel çözümlerin kalıcı öğretilmesi hem de ileri düzey öğrenmelere hazırlık yapılmıştır.
Kitabın önemli özelliklerinden birisi bilgisayar uygulamalarına da yer vermesidir. Kitap için özel olarak yazılan FinansMatematikL paketi kitapta anlatıldığı şekilde tamamen öğrenmeye yönelik bir uygulamadır. Paket kitapta anlatılan hesaplama yöntemleri esas alınarak ve temel düzeyde R editörü bilgisiyle kullanılabilecek fonksiyonlardan oluşmaktadır.
Kitabın tüm öğrencilere faydalı olmasını diliyorum.

Bu kitapta kullanılan FinansMatematikL paketini aşağıdaki linkten indirebilirsiniz.

https://www.nobelyayin.com/sunumlar/FinansMatematikL_1.0.0.zip
Yüksel Soykan Bu kitap, üniversitelerimizin lisans seviyesinde okutulan "Fonksiyonel Analiz" dersine yardımcı olmak amacıyla hazırlanmıştır. Kitapta, lisans seviyesinde gerekli olabilecek birçok bilgiye ve konuya yer verilmeye çalışılmıştır ve lineer fonksiyonel analizin yöntem ve fikirlerinin bir tanıtımı sağlanarak, sonlu boyutlu lineer cebirin ve analizin iyi bilinen ve yararlı kavramlarının nasıl sonsuz boyutlu normlu uzaylara genişletilebileceği gösterilmiştir. Lisans üstü çalışmalarda da kitaptan kaynak olarak yararlanılabilir.
Çalışma, üniversitelerin matematik ve fizik bölümlerinde okutulan "Fonksiyonel Analiz" derslerinde ders kitabı olarak okutulabilecek niteliktedir.
İÇİNDEKİLER
1 Yardımcı ve Gerekli Ön Bilgiler
2 Normlu Uzaylar
3 Lineer Dönüşümler
4 Fonksiyonel Analizin Temel Teoremleri
5 Dual ve Özellikleri
6 İç Çarpım Uzayları ve Hilbert Uzayları
7 Hilbert Uzayları Üzerinde Lineer Dönüşümler
8 Kompakt Operatörler
9 İntegral Denklemler
10 Analitik Fonksiyonların Banach Uzayları
Hülya Duru Bu kitapta, fonksiyonel analizin başlıca konuları verilmiştir. Kitap, lisans ve yüksek lisans öğrencileri ile bu konularda çalışmak isteyenler için hazırlanmıştır. Kullanılan matematik dili aynı olduğundan kitapta geçen topolojik bilgiler için yazarın Nobel Akademik Yayıncılık tarafından basılan Topolojiye Giriş kitabına başvurulabilir. Kitapta; geniş bir kapsama sahip konular arasında bir denge gözetilerek, Hahn-Banach teoreminin cebirsel, analitik ve geometrik formları; Ziya Paşa, Stone-Weierstrass, Krein-Milman, Banach-Steinhaus teoremleri verilmiştir. Kitabın ana başlıkları şöyledir:
• Ön hazırlıklar,
• Normlu vektör uzayları,
• Sonlu boyutlu uzaylar ve kompaktlık,
• Düzgün sınırlılık ilkesi,
• Açık fonksiyon teoremi,
• Zayıf topolojiler,
• Konvekslik,
• Banach uzaylarında dualite.
Yüksel Soykan Fonksiyonel Analiz Çözümlü Alıştırmaları, yazarın, Fonksiyonel Analiz adlı kitabının alıştırmalarının tümünün, kapsamlı çözümlerini içermektedir. Kitapta, sorular çözülürken gerekli hatırlatmalar yapılmış, çözümler yeterince açık olarak verilmiştir. Çalışma, üniversitelerin matematik bölümlerinde okutulmakta olan Fonksiyonel Analiz dersinin anlaşılmasını kolaylaştıracaktır. Kitap, üniversitelerimizde lisans ve lisans üstü düzeyde Fonksiyonel Analiz dersi alan öğrencilere kaynaklık edecek bir çalışmadır.
Birçok alanda eksikliği hissedilen Türkçe alıştırma kitabı eksikliğinin de giderilmesi yolunda küçük bir katkımız olmasını ümit ediyoruz.
İçindekiler
1 Yardımcı ve Gerekli Ön Bilgiler
2 Normlu Uzaylar
3 Lineer Dönüşümler
4 Fonksiyonel Analizin Temel Teoremleri
5 Dual ve Özellikleri
6 İç Çarpım Uzayları ve Hilbert Uzayları
7 Hilbert Uzayları Üzerinde Lineer Dönüşümler
8 Kompakt Operatörler
9 İntegral Denklemler
10 Analitik Fonksiyonların Banach Uzayları
Richard Haberman Bu kitap, fiziksel bilimlerde önemli bir referans kitap olmasının yanı sıra matematik, fiziksel bilimler ve mühendislik lisans son sınıf veya yüksek lisans düzeyinde ders kitabı olarak okutulacak şekilde yeterli içeriğe sahiptir. Uygulamalı matematik alanında Türkçe literatürde eksik kalan uygulamalı kısmi türevler konularını içeren bu kitabın matematiksel bilimler, fiziksel bilimler ve mühendisler alanında önemli bir Türkçe kaynak ve ders kitabı açığını dolduracağı umulmaktadır.
Ahmet DERNEK Genel Matematik kitabı, Fen Edebiyat Fakültelerinin Matematik Bölümleri dışında Matematik, Genel Matematik, Yüksek Matematik gibi isimler altında verilen dersler için hazırlanmıştır. Teknik Eğitim Fakülteleri ve Eğitim Fakültelerinin yanı sıra İktisat ve Ekonomi Bölümlerinde verilen Matematik dersi programlarına da uygun bir içeriğe sahip olan çalışma, öğrencilerin konuları daha iyi öğrenebilmeleri için anlaşılır bir üslupla kaleme alınmıştır.
Tanım, teorem ve sonuçların çok yalın ifadelerle verildiği çalışmada, yeteri kadar örnek çözülmüş ve reel sayılar, fonksiyonlar, limit ve süreklilik, türev, integral, matris, diziler ve seriler konuları kapsamlı olarak işlenmiştir.
Nurettin Ergun Bu kapsamlı kitapta, çözümleri ayrıntılı biçimde verilmiş 1500 örnek ve alıştırma, kanıtlamaları ayrıntılı biçimde anlatılmış ve çoğu ilk kez bir Türkçe topoloji kitabında yer alan 200 önerme ve teorem yer almaktadır. Kitabın sonunda Prof. Dr. Cem Tezer tarafından ustalıkla yazılmış 70 sayfalık bir Cebirsel Topolojiye Giriş bölümü yer almaktadır. Kitabın bölümleri şunlardır:

 Topolojik Uzaylar
 Topoloji Tanımlama Yöntemleri
 Süreklilik ve Eşyapı Fonksiyonları
 Tabanlar ve Yakınsaklık
 Ayırma Türleri
 Yeni Tür Uzaylar Tanımlamak
 Gerçel Sayıların Öklid Uzayı
 Metrik Uzaylar
 Metrik Uzaylarda Sürekli Fonksiyonlar
 Tam Metrik Uzaylar
 Metriklenebilme
 Banach Uzayları
 Örtülüş Özellikleri
 Bağlantılı Uzaylar
 Ek Bölüm: Cebirsel Topolojiye Giriş
İsmail Naci Cangül Kitabın temel amacı, kendini geliştirmek isteyenlere bir başlangıç noktası oluşturabilmektedir. Kitaptaki sorular üç başlıkta toplanmıştır. Matematiksel Düşünme bölümünde, basit matematik bilgilerinin kullanılmasıyla çözülebilecek sorulara ağırlık verilmiştir. Yorumlama bölümündeki sorular okuyucunun matematiksel yöntemlerden daha çok pratik hesaplama ile çözebileceği sorular olarak düşünülmüştür. Üç Boyutlu Düşünebilme bölümünde ise şekilsel algılama ile ilgili sorulara ağırlık verilmiştir. Her bölümün sonunda o bölümdeki tüm soruların çözümleri de verilmiştir. Bunun amacı okuyucunun, takıldığı soruların çözümlerini öğrenmesinin yanı sıra, çözdüğü soruların alternatif çözüm metotlarından da haberdar olmasıdır. Kitap yediden yetmişe matematiğe ilgi duyan, problem çözmeyi seven herkese beklentilerini sunacaktır.
Olkan Çuvalcı Standart ölçülendirme sisteminde tolerans sınırlarının merkezden uzaklığının her yönde eşit belirlenememesinden kaynaklanan sorunları ortadan kaldırmak için Geometrik Ölçülendirme ve Toleranslandırma günümüz teknolojisinde yapılan tüm teknik çizimlerde kullanılması gereken bir sistemdir. Bu alanda yeterli Türkçe yayının bulunmadığı bir ortamda, Geometrik Toleranslar ve Uygulamaları kitabı bu açığı biraz olsun kapamak için eğitim ve başvuru kitabı olarak hazırlanmıştır.
Kitap, teknik çizimlerin daha iyi anlaşılabilmesi ve tasarımdan imalata k,adar olan süreçte mühendisler ve teknik elemanlar arasında daha iyi iletişim kurabilmek için aşağıdaki başlıklarda teknik bir dil sunmaktadır. Günümüzde bu dil; Geometrik Ölçülendirme ve Toleranslandırma dilidir.
• Ölçü ve ölçü toleransları
• Geometrik boyutlandırma ve toleranslandırmada temel kavramlar
• Geometrik tolerans sembolleri ve çerçeveleri
• Malzeme koşulları ve kurallar
• Referans ve referans düzlemleri
• Şekil ve profil toleransları
• Yönelim toleransları
• Konum toleransları
• Bağlama elemanları deliklerinin toleransları
• Salgı toleransları
• Toleranslandırma uygulamaları
• Grafik analizle tolerans kontrolü
Ahmet Fidan, Ahmet Vedat Koçal, Ayşem Biriz Karaçay, Bekir Halhalli, Canan Şeyma Demir, Damla Mursül, Hatice Kübra Canpolat, İsa Uslu, Meltem Yıldırım Başoğlu Soğuk Savaş sonrasında totaliter rejimlerin liberal demokrasi ve serbest piyasa ekonomisi karşısında çözülüşleri ile yeni bir özgürlük çağı olarak sunulan neoliberalizmin, çok geçmeden içine girdiği derin ekonomik kriz, küresel ve sosyal eşitsizlik, işsizlik, kitlesel yoksulluk, yerel, bölgesel ve ülkeler arası çatışmalar, iklim krizi gibi yan etkileriyle de birleşerek geniş kitlelerin başka ülkelerde çare aramak üzere ülkelerini terk etmelerine neden oluyor.
Coğrafi bakımdan uluslararasılığın sınırlarını aşıp küreselleşen, süre bakımından anavatandan geçici ayrılışı ifade etmekten çıkıp kalıcılaşan, sayısal bakımdan, insanlık tarihinde neredeyse hiç görülmemiş boyutlara ulaşarak kitleselleşen, hukuksal bakımdan düzensizleşen güncel göç hareketleri, toplumsal, politik, bürokratik, entelektüel ve medyatik kamuoylarının olduğu gibi, akademik çevrelerin de yoğun ilgi alanlarından birini oluşturuyor.
Hâl böyle iken, uluslararası göç, Türkiye Sosyal Bilimler akademisinde ancak Suriye iç savaşı sürecinde milyonlarca insanın ülkeye sığınmasıyla kayda değer bir ilginin konusu olmaya başlamıştır. Sığınmacılara yönelik düzenleme, politika ve uygulamalar, toplumlar arası uyum sorunları gibi yeni deneyimler, çoğunluğu alan araştırmalarından oluşan yayınların konularını oluşturmaktadır. Özellikle göçmen nüfus tartışmaları ve kültürel farklılaşmalar, yer yer çatışmaya varan sosyal gerilimler, akademinin göç konusuna ilgisine duyulan gerekliliği ve ihtiyacı göstermektedir. Elinizdeki kitap, bu gerekliliğe ve ihtiyaca karşılık sunma çabası ile okura sunulmaktadır.
Abuzer Gündüz Halka Teorisi, üniversitelerimizin lisans derslerinde okutulan ve genel olarak cebirsel geometrinin temel araçlarını barındıran bir teoridir. Temel motivasyonu, tam sayılarda yapılan aritmetiğin bir benzerini yeni halka sınıflarında yapabilmektir. Bu açıdan tümüyle soyut düşünme yeteneğine yaslanır. Bir şeyleri adlandırmak ve onlar arasında ilişkiler kurmak bu sürecin başlangıç noktasıdır. Bu yeni yapıların bize sunduğu imkânlar oldukça şaşırtıcıdır.
Biz bu kitapta ilk olarak lisans düzeyinde okutulan ilk yedi bölümü olabildiğince detaylı, ispatları açık şekilde ve çözümlü sorularla vermeye çalıştık. İkinci olarak, bu konularda araştırma yapmak isteyen lisans son sınıf ve lisansüstü öğrencileri için son dört bölümü yazdık. Bilhassa bu konuda makale okuyabilecek seviyeye gelmeleri temel amacımızdır.
Okuyucunun, çözümlü soruları ve bölüm sonu soruları çözmeye çalışarak muhakeme yeteneğini geliştirmesini ve ispat yapabilme alışkanlığını edinmesini ummaktayız.
Kitabın, tüm okuyuculara faydalı olması dileğiyle…
Adnan Mazmanoğlu Bilim insanları, mühendisler ve doktorlarla iş birliğinde kurulan diyaloglarla ilginç matematiksel kavramlarının temelinde çoğunlukla uzmanlık alanları olasılık ve istatistik olduğu görülür. Çünkü amaç, gerçek hayattaki problemlere yaklaşımındaki merak duygusunu yansıtmak. Çağımızda sayısal (nicel) bilgi toplanabilen her araştırma alanında istatistik yöntemler kullanıldığı gibi istatistik bilimler üstü bir disiplin olma aşamasına ulaştığını söyleyebiliriz. Toplumsal olayların hızlı gelişimi, davranış psikolojisi, otomatik üretim süreçleri, bilgisayarlar gibi büyük teknik sistemlerin yönetimi, jeolojik süreçler, gazlardaki karmaşık olgular, fizikte kuantum mekaniği, sinir sisteminin işlevleri, beynin yansıtıcı ve yönlendirici çalışmaları, istatistik yöntemlere başvurulmadan incelenemezler. Biyoloji, antropoloji, sosyoloji, psikoloji, iktisat, işletme, tıp, kuantum fiziği, biyofizik, vb., özetle tüm bilim dalları, yönetim kuruluşları, teknoloji istatistikten yararlanır. Nasıl ki gerçek yaşamdaki problemleri denklemlere dökerek çözüm bulabiliyorsak, verilerden, gerçek yaşam problemlerine çözüm bulmak da istatistiğin en temel amacıdır. Bu nasıl olur? Kitabımızda bu yüzden veriler geniş bir şekilde anlatılmıştır. Buradan hareketle veri toplama, verileri düzenleme ve sunma, verileri özetleme, çözümleme teknikleri tıpkı matematikteki denklemlere bulunan çözümler gibi basitten başlayarak formüllerle çok yalın bir şekilde ezbere dayanmadan evreler halinde verilmiştir. İstatistik tahminlerinin doğruya yakın olma durumunda hayat kurtarır. Deprem, tıp bilim alanları insana en yakın bilim dalları olduğundan zaman içinde oluşturulacak verilerden insanları en az hasarla hayatlarını doğal afetten de koruyacağını söyleyebiliriz. Kitabımızda yukarıdaki açıklamaların 1., 2., 3., 4., 5. ve 6. bölümlerde istatistiksel formüllerle uygulamaları anlatılmıştır. Kitabımızda tahmin konusu çok geniş tutulmuştur. Hipotezler (H0, H1) çok kapsamlı, herkesin kolayca anlayacağı şekilde değişik konulardan örneklerle verilmiştir (7. Bölüm). Herkes tarafından kullanılan Regresyon ve Korelasyon konularının SPSS kullanımlarıyla teoriye yer vererek 8. ve 9. bölümde geniş bir şekilde anlatılmıştır. Bunlara ek olarak 10. Bölümde de bilim ve teknikteki ilerleme, istatistiğe duyulan gereksinim, yöntemlerin gelişmesi, bilgisayarlar ve bilgisayarlı yazılımların birbirini karşılıklı etkileyerek istatistik araştırmaların bu denli yayılmasına, erişilmez gibi görünen çok değişkenli, çok sayıda verilerin (büyük veri~big data) bile işlenip çözümlenmesine yol açtığı yazılımların en popüler olan yazılımı SPSS ile uygulamalara yer verilmiştir. Büyük veri~big data için de Google tarafından geliştirilen MapReduce ve Hadoop programlama dillerini de hatırlatmak isteriz.
Gerard A. Venema Okulda çalıştığımız geometrinin büyük bir kısmı antik zamanlarda keşfedilmiş ve yaklaşık MÖ 300'de Yunan matematikçi İskenderiyeli Öklid tarafından sistemleştirilmiştir. Öklid'in bu çalışmalarından sonra geçen yıllar boyunca, Öklid geometrisi genişlemeye devam etmiştir. Öklid geometrisi üzerine inşa edilen pek çok güzel ve şaşırtıcı yeni keşif, çeşitli insanlar tarafından gerçekleştirildi. Kitapta bu yeni sonuçlardan bazılarını keşfetmek için kullanımı kolay bir dinamik geometri yazılımı kullanılmaktadır.
Okuyucuya bu teoremleri keşfetmeleri, bunların daha derin bir anlayışını geliştirmeleri ve bu teoremleri yararlı olmaları kadar zarafet ve güzellikleri için de takdir etmeye başlamaları için rehberlik edilecektir.
Osman Altıntaş, Aslan Bahtiyar Matematiğin ilgi alanı; içinde şekil, ölçü ve sayı olan yapılardır.
Matematikte iki kavram çok önemlidir. Bu kavramlar şekillerin güzelliğini ortaya koyan simetri ile estetiğini ortaya çıkaran ve bir sayı ile ifade edilen “altın oran”dır. Boyumuz, ağırlığımız, kalbimizin atışı, damarlarımızdaki kanın akış hızı, iç organlarımızın kapasiteleri, duyu organlarımızın algılama hızı, organlarımızın ağırlıkları vb. birer sayı olarak ifade edilirler. Bu nedenle kitabın adının “İnsan Vücudunda Matematik” olması uygun görülmüştür.
Kitapta, başlıca iç organlarımız, duyu organlarımız ve vücudumuzun komuta-kontrol merkezi olan beynimiz yapı ve işleyiş olarak kısaca anlatılmış ve faaliyetlerinin sayısal olarak değerlendirilmesi yapılmıştır. Verilen sayısal bilgilerde kesinlik olamaz, yaklaşıklık söz konusudur. Örneğin, insan vücudundaki hücre sayısı 100 trilyon derken bunun sayılarak elde edilen sonuç olamayacağı açıktır. İnsan vücudu öyle bir makinedir ki bu makinenin sırlarını çözmek bir yana tasarımını yapmak bile mümkün değildir.
Serhat ŞEKER, Tahir Çetin AKINCI Bu kitap; Mühendislik Fakülteleri, İktisadi ve İdari Bilimler Fakülteleri ve Fen Fakültelerinde okutulan Olasılık ve İstatistik dersleri için temel kaynak niteliğindedir. Kitap, lisans düzeyinde temel istatistik konularını ele aldığı gibi, içeriğindeki Zaman Serileri Analizi, Rastgele Sayı Uygulamaları ve Rastlantısal Similasyon konuları ile lisansüstü araştırmacıların da faydalanabileceği bir kaynaktır. Kitapta; temel istatistik konuları çok sayıda örneklerle anlatılmış, ayrıca bilgisayar uygulamaları için özellikle MATLAB kullanıcıları için program parçacıklarının da yer aldığı birçok örneğe yer verilmiştir.
İstatistik ve Rastgele Sayılar ile ilgili yabancı dilde çok sayıda kitap bulunmasına karşılık Türkçe kitap sayısı oldukça azdır. Lisans ve lisansüstü öğrencilerinin temel ders kitabı olarak yararlanacakları kitabın, bilgisayar tabanlı istatistiksel analizler yapan araş-tırmacılar için de önemli bir kaynak olacağı düşüncesindeyiz.
Bülent Yılmaz Bu ders kitabı Eğitim Fakülteleri, Fen Edebiyat Fakülteleri ve Meslek Yüksek Okullarında (Sağlık Meslek Yüksek Okulları) İstatistik, Genel İstatistik ve İstatistiğe Giriş adı altında okutulan derslerin içeriği temel alınarak hazırlanmıştır.
Birinci bölümde istatistik ve grafik kavramları, seriler ve frekans eğrileri üzerinde durulmuştur. Sonraki bölümlerde olasılık ve olasılık fonksiyonu, beklenen değer ve momentler, dağılımlar kuramı, korelasyon ve regresyon geniş örnek uygulamaları ile incelenmiştir.
Sadık Çökelez İstatistik biliminin temel unsurlarından olan binom ve normal olasılık dağılımı gibi konulara içgüdüsel bir yaklaşım getirip kolay anlaşılmasını sağlayacak yöntemleri kullanarak ve çok kapsamlı Excel bilgisayar uygulamalarına ve ekran kopyaları içeren görsel yaklaşıma yer vererek hazırlanan bu kitap her ne kadar istatistik konusuna giriş mahiyetinde olsa da temel hususlara ilaveten, öğrencilerin nedenini ve faydasını sorguladığı, başka kaynaklarda pek açıklanmayan bazı önemli formüllerin içgüdüsel temel mantığını ve kitabın normal dağılım bölümünde proje yönetimi, envanter yönetimi, kalite yönetimi gibi gerçek hayat problemleri ile bağlantılarını da vurgulamakta olup eğitim sektöründe bazı alanlarda kısmi bir rehber olabilir.
Arif Sabuncuoğlu Üniversitelerimizin İşletme ve İktisat Bölümlerinde okutulan genel matematik dersleri için hazırlanmış olan iki ciltten birincisi olan bu kitapta her kesimin sonuna bolca çözümlü soru konulmuştur. Her sorunun çözümü geniş ve açık olarak anlatılmıştır. Konular işlenirken bazı teoremlerin ispatları verilmese bile neden öyle olduğu geometrik olarak sezdirilmeye çalışılmıştır. Teoremlerin ve temel formüllerin çoğunun ispatı yapılmıştır.
Kitapta, teoremleri ve temel bilgileri açıklayıcı yeterince örnek bulunmaktadır. Yeni bir kavram verilirken bu kavramın önceki kavramlarla ilgisi kurulmuş, öğrencilerimizin en kolay yoldan o bilgileri anlayarak öğrenmelerine çalışılmıştır.
Arif Sabuncuoğlu Üniversitelerimizin İşletme ve İktisat bölümlerinde okutulan genel matematik dersleri için hazırlanmış olan iki ciltten ikincisi olan bu kitapta her kesimin sonuna bolca soru konulmuştur. Her sorunun çözümü geniş ve açık olarak anlatılmıştır. Konular işlenirken bazı teoremlerin ispatları verilmese bile neden böyle olduğu sezdirilmeye çalışılmıştır. Teoremlerin ve temel formüllerin bazılarının ispatı yapılmıştır.
Kitapta, teoremleri ve temel bilgileri açıklayıcı yeterince örnek bulunmaktadır. Yeni bir kavram verilirken bu kavramın önceki kavramlarla ilgisi kurulmuş, öğrencilerimizin en kolay yoldan o bilgileri anlayarak öğrenmelerine çalışılmıştır.


Marvin L. Bittinger, Judith A. Beecher, David J. Ellenbogen, Judith A. Penna Bu kitap, kalkülüsün temel kavramlarını günlük hayattan kopmadan oldukça sade bir dille görsellerin gücünden de faydalanarak anlatmaktadır. Matematiğin soyut kavramları; beslenme, sağlık, spor, turizm, eğitim, öğretim, tarım, ticaret, tıp, astronomi, ekonomi, kimya, biyoloji gibi birçok farklı alanda dünyanın çeşitli ülkelerinden toplanan veriler yardımıyla örneklendirilerek sunulmaktadır. Bu anlatımıyla kitap, ezber üzerine kurulmuş bir öğretimden uzak, tamamen matematiksel yapıların anlaşılmasına yönelik bir fırsat yaratmaktadır. Matematik ezberleyerek değil, üzerinde düşünülerek, yorum yapılarak ve kavramlar arasında ilişki kurularak başarılabilecek bir bilim dalıdır. Ancak bu şekilde amacına ulaşır ve insana mantıklı ve analitik düşünmeyi, analiz ve sentez yapmayı, problemlere çözüm bulmayı, yenilikleri keşfetmeyi, teknolojiyi kullanmayı öğretir. Bu kitapta bütün bunları yapabilmenin ne kadar da kolay olduğunu görecek ve kalkülüs derslerine en iyi şekilde hazırlanmış olacaksınız…
Ali Mazı Bireylerin öğrenme ortamlarında karşılaşabileceği olumsuz durumlara çözüm üretilerek diğer öğrencilerle aynı sınıf ikliminde eğitime erişimi, katılımı ve desteklenmesi kapsayıcı eğitimin temelini oluşturmaktadır. Eğitime erişen, etkin katılan ve gerekli desteğe ulaşan bireyler, toplumdan kaynaklı sorunları anlayarak sahip oldukları problemleri çözme konusunda daha girişimci olabilirler. Bununla birlikte kapsayıcı eğitimde hedef, yalnızca dezavantajlı bireylerin ihtiyaçları için değil eğitim ortamındaki bütün bireylerin gereksinimlerine yönelik ortak bir program oluşturmaktır. Bu kitap, kapsayıcı matematik eğitimine yönelik uygulamalar içermektedir. Uygulama örneği olarak 4. sınıf matematik dersi geometri öğrenme alanına ilişkin örnek etkinlikler bulunmaktadır. Bu kitapta ayrıca kapsayıcı matematik eğitimine yönelik veli ve öğretmen görüşleri de yer almaktadır.
Richard Johnsonbaugh Bu eser, üniversitelerde Kesikli Matematik ya da Ayrık Matematik adı altında verilen derslerin bir ya da iki dönemi kapsayan giriş düzeyi için tasarlanmış bir kitaptır. İçeriğinde sunulan yaklaşık 4200 alıştırma ile Kesikli Matematik konusunda öğrencilere pratik yapabilmeleri için büyük fırsat sunmaktadır. Bunun yanında yaklaşık olarak 650 adet çözümlü örneğe yer verilerek öğrenenlere kolaylık amaçlanmıştır. Kitapta çeşitli problem çözme teknikleri ayrıntılı olarak modellenmiştir. Aynı zamanda kanıtların matematiksel bir olgunlukla nasıl okunacağı, yazılacağı gösterilmekte ve tavsiyeler verilmektedir.
Kitapta algoritmalar ve algoritma analizi geniş kapsamlı olarak verilmiştir. Yaklaşık 150 adet bilgisayar alıştırmasıyla birlikte bilgisayar bilimine önem veren kapsamlı uygulamalar; çizgeler ve ağaçlar konularında önemli kavramlar ve algoritmalar bol örneklerle anlaşılır bir şekilde sunulmuştur. Boolean cebirlerinin kombinasyonel devrelerle olan ilişkileri detaylı bir şekilde verilmiştir.
Hilmi Demiray Kısmi türevli diferansiyel denklemler kavramıyla ilk defa karşılaşan matematik ve mühendislik öğrencileri için hazırlanan bu kitap, altı ana bölümden oluşmuştur. Birinci bölüm, kısmi türevli diferansiyel denklem kavramının açıklanmasına ve çözüm yöntemlerinden ne anlaşılması gerektiği konusuna ayrılmıştır. İkinci bölümde, birinci mertebeden yan doğrusal, doğrusal ve doğrusal olmayan denklemlerin çözüm yöntemleri verilmiştir. Üçüncü bölümde, yüksek mertebeden, özellikle de ikinci mertebeden denklemlerin sınıflandırılması yapılmış ve çeşitli çözüm yöntemleri açıklanmıştır. Ayrıca yüksek mertebeden, sabit katsayılı diferansiyel denklemler için çeşitli çözüm yöntemlerinin tanıtımına yer verilmiştir. Dördüncü bölümde, dalga denkleminin özellikleri incelenmiş, çeşitli başlangıç ve sınır koşulları altında çözüm yöntemleri anlatılmıştır. Beşinci
bölümde, Laplace denkleminin özellikleri anlatılmış ve çeşitli sınır koşulları altındaki çözümleri açıklanmıştır. Son olarak altıncı bölümde, difüzyon denklemi incelenmiş ve çeşitli çözüm yöntemlerinden söz edilmiştir. Bu konular incelenirken konuyla ilgili çok sayıda çözümlü örnekler verilerek konuların daha kolay anlaşılır olmasına çalışılmıştır. Ayrıca okuyucuların kendilerini test etmelerine yardımcı olmak için her bölümün sonunda çok sayıda örnek problem eklenmiştir.